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Aluminum-based, particulate-reinforced Metal Matrix
Composites (MMCs) were of interest for structural ap-
plications where weight saving was of primary concern
[1, 2]. Ceramic particles in the ductile matrix lead to
desirable properties [3, 4]. These properties include in-
creased strength, higher elastic modulus, higher service
temperature, improved wear resistance, decreased part
weight, low thermal shock, high electrical and ther-
mal conductivity, and low coefficient of thermal ex-
pansion compared to conventional metals and alloys
[5, 6]. There were several fabrication techniques avail-
able in manufacturing the MMC materials. According
to the type of reinforcement, the fabrication techniques
obtained vary considerably. These techniques included
stir casting (compocasting) [7, 8], liquid metal infil-
tration [9], squeeze casting [10], and spray codeposi-
tion [11]. Compocasting involves the addition of par-
ticulate reinforcement into semisolid metal by means
of agitation. The advantage of compocasting lies in a
lower processing temperature [12], leading to a longer
die life and high production cycle time [13]. Little of
this work, however, was concerned with investigation
of time required for particulate distribution. Unfortu-
nately, in normal practice the effect of the stirring action
on the flow patterns was observed as they took place in
a non-transparent molten metal within a furnace. As
such, and because of the fact that, direct measurements
of metal flow characteristics was made expensive, time
consuming and dangerous, the current research focuses
on methods of simulating fluid and particle flow dur-
ing stirring. Very little work had been conducted to date
with simulation materials for the compocasting process
[14–16].

The fracture resistance of particle reinforced MMCs
were made the subject of active research for many years.
Generally, it was recognized that fracture-related fea-
tures of MMCs were improved by both intrinsic and ex-
trinsic mechanisms [17, 18]. Interior mechanisms im-
proved fracture features with increasing the inherent
microstructural resistance to crack growth through con-
trol of intrinsic characteristics such as particle size, re-
inforcement amount, and the microstructure of matrix.
On the other hand, exterior mechanisms, improved frac-
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ture features by providing alternative crack propagation
routes or reducing the driving force for crack growth
through various processes that shield the crack tip from
the applied stress. These processes consisted of crack
defection, crack bridging and crack trapping [19, 20].

Experimental processes were presented with all de-
tails. Artificial neural networks were the ability of learn-
ing non-linear processes due to the learning ability by
using previously obtained data. So, some experimental
data was prepared to train neural network from obtained
experimental data.

Microstructure of the stir cast composite showed that
large SiC particles with small Al2O3 particles rein-
forced MMC was successfully produced. Fine alumina
particles >5 µm are uniformly distributed inter-particle
spacing of coarse SiC particles. The microstructure of
the alloy is dependent on the cooling rate of casting.
This effect becomes important in the case of the com-
posite because the Al2O3/SiC particle distribution is
affected by the growing aluminum, in that the lead-
ing edges of the growing aluminum dendrites push the
Al2O3/SiC particles which are then trapped by the con-
verging dendrites arms in the intercellular regions. The
cooling rate, therefore, influences the distribution of
SiC particles in the casting. EDS analyses of the matrix
alloy showed oxygen and carbon peak from the EDS
analysis confirmed that alumina and SiC particles are
present within the composites, whereas these elements
did not exist showing Al-Si-Mg matrix alloy.

Gui et al. [21] investigated the tensile strength, den-
sity and porosity properties of the MMCs, which was
produced by the same method. In their study, the cavi-
ties among the aggregated SiC particles tend to decrease
the composite densities. So, the density of composites
is a basic criterion with which to evaluate their qual-
ity. Table I gives the values of density and porosity of
the composites after experiment. Similar results were
found in this study. It was found that employing the
experiments following liquid stirring caused an evident
increase in density of two composites, resulting in a
significant improvement in quality of composites.

The aim of this paper was to investigate the prediction
of physical properties and tensile strengths in particle
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TABL E I The neural network training and test set∗

Outputs of neural network
Inputs of

networks Output # 1 Output # 2 Output # 3

Experimental values

Particle size Tensile strengths Density Porosity
Samples (µm) (MPa) (g/cm3) (%)

S(1) 2 287.1 2.6943 3.33
S(2) 4 275.4 2.6998 3.16
S(3) 8 268.3 2.7001 3.14
S(4) 10 254.7 2.7018 3.03
S(5) 16 251.3 2.7034 3.03
S(6) 20 248.6 2.7075 2.83
S(7) 27 245.1 2.7084 2.85
S(8) 38 241.8 2.7096 2.76
S(9) 45 239.2 2.7147 2.56
S(10) 49 236.2 2.7203 2.42
S(11) 53 233.9 2.7259 2.22
S(12) 60 229.2 2.7268 2.19
S(13) 67 225.9 2.7287 2.12
S(14) 75 221.8 2.7301 2.07
S(15) 87 219.5 2.7347 1.91

∗Ten of them were used in the training set. Others were used in test set.

reinforced aluminum matrix composites by training a
neural network. Back propagation algorithm was used
in the training with one hidden layer. Back propaga-
tion was a systematic method for training multi-player
artificial neural networks. It was a strong mathemati-
cal foundation based on gradient descent learning. The
neural network software was developed using Delphi
Programming language. A sample multi-layer feed for-
ward net structure, which has one hidden layer, is given,
and all parameters are given according to this (Fig. 1
[22]).

Table I shows that with decreasing in particle size,
density properties value decreases. This is due to the
fact that, the porosity values have increased because
of increasing particle surface areas when they are in
contact with air, and under these circumstances the

Figure 1 The structure of designed neural network.

density values have decreased. In addition, the com-
posites’ density has decreased because of the porous
nature gathered by Al2O3/SiC particles in the matrix.
So, the density of composites is a basic criterion with
which to evaluate their quality. Small particles in the
composites caused crackling under mechanical forces.
This situation on the composites including small parti-
cles showed higher tensile strength and hardness. Due
to the fact that dislocation movement was inhibited
and the shape changing becomes difficult, particle size
decreased. This feature increased the tensile strength
and hardness resistance values. In the microstructure
of the MMC produced, the Al2O3/SiC particle distri-
butions were homogeneous in the matrix. The fracture
surfaces of the MMCs showed friable fracture charac-
teristics, on the fracture surfaces of the composites, bro-
ken and cracked Al2O3/SiC particles were observed and
the cracks were initiated in the friable eutectic silicon
phase.

A neural network that uses gradient descent error
learning was designed and used in the prediction. The
designed neural network was 1 input and 3 outputs. In
training of BP neural network, 15 input and output vec-
tor sets are generated from the experiments. Ten of these
are used as learning sets, and others are used in test. Due
to the characteristic of sigmoid activation function, the
training set is scaled between 0 and 1. Learning rate and
the momentum rate are experimentally chosen, exper-
imentally, as 0.3 and 0.8, respectively. The number of
neurons in the hidden layer was generally selected ex-
perimentally, and 12 neurons in the hidden layer were
found successful in training process, and decided ex-
perimentally. The training process has been completed
approximately in 520.000 iterations. When the training
is completed, a neural network is designed using the
obtained weights as seen in Fig. 1 and given in Table II
as values. The error of the system was computed by us-
ing MSE (Mean Square Error) given in Equations (1)
and (2), and error at the end of learning process was
0.0000182. Here, N denotes the total number of sam-
ples in training set, and the set C includes all the neurons
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TABL E I I Obtained weights at the end of training process

WJ [J0, I] = 41.191546119 WK [K0, B1] = 3.595394631 WK [K1, J10] = −1.179873373
WJ [J0, B0] = −20.25175778 WK [K0, J0] = −1.315998097 WK [K1, J11] = −1.482848066
WJ [J1, I] = −28.960835271 WK [K0, J1] = −3.716089238 WK [K2, B1] = 6.716179013
WJ [J1, B0] = 13.819779391 WK [K0, J2] = −0.766354169 WK [K2, J0] = −4.350504363
WJ [J2, I] = −3.676852876 WK [K0, J3] = −5.809247370 WK [K2, J1] = −9.271330282
WJ [J2, B0] = −2.311909835 WK [K0, J4] = 2.280197470 WK [K2, J2] = −0.642358420
WJ [J3, I] = 15.981138421 WK [K0, J5] = 1.000575782 WK [K2, J3] = −10.134725479
WJ [J3, B0] = −6.879953219 WK [K0, J6] = 1.129937214 WK [K2, J4] = 6.502112074
WJ [J4, I] = 2.837895112 WK [K0, J7] = −6.538942956 WK [K2, J5] = 1.011886902
WJ [J4, B0] = 2.437500377 WK [K0, J8] = 0.806499968 WK [K2, J6] = 0.658500810
WJ [J5, I] = −0.547140353 WK [K0, J9] = 0.672846289 WK [K2, J7] = −7.663237777
WJ [J5, B0] = −1.372896373 WK [K0, J10] = 15.270444967 WK [K2, J8] = 0.899646829
WJ [J6, I] = −1.731442374 WK [K0, J11] = 0.0289922607 WK [K2, J9] = 0.553607250
WJ [J6, B0] = −1.100640484 WK [K1, B1] = −1.893904428 WK [K2, J10] = 9.320139684
WJ [J7, I] = −16.399013021 WK [K1, J0] = 0.599911896 WK [K2, J11] = 0.440289365
WJ [J7, B0] = 4.712174020 WK [K1, J1] = 1.308300527
WJ [J8, I] = −0.809892501 WK [K1, J2] = −0.835698109
WJ [J8, B0] = −1.633792400 WK [K1, J3] = 1.4855900542
WJ [J9, I] = −2.047123965 WK [K1, J4] = −0.466955518
WJ [J9, B0] = −1.567927474 WK [K1, J5] = −1.012674167
WJ [J10, I] = −39.119896334 WK [K1, J6] = 0.633805999
WJ [J10, B0] = 9.731174280 WK [K1, J7] = 1.106677362
WJ [J11, I] = 0.491177643 WK [K1, J8] = −0.803157638
WJ [J11, B0] = −1.990067054 WK [K1, J9] = 0.891615827

Note. The representation of all abbreviations used in this table are given in Fig. 1.

TABL E I I I Obtained results from the neural network for training set

Particle size Experimental Neural Experimental Neural Experimental Neural
(µm) tensile strengths network density network porosity network

Samples input (MPa) outputs (g/cm3) outputs (%) outputs

S(1) 2 287,1 287.43 2,6943 2.6951 3,33 3.30
S(2) 4 275,4 274.24 2,6998 2.6987 3,16 3.18
S(4) 10 254,7 254.99 2,7018 2.7025 3,03 3.01
S(6) 20 248,6 248.41 2,7075 2.7073 2,83 2.83
S(8) 38 241,8 242.18 2,7096 2.7092 2,76 2.76
S(9) 45 239,2 238.81 2,7147 2.7148 2,56 2.57
S(10) 49 236,2 236.02 2,7203 2.7196 2,42 2.42
S(12) 60 229,2 229.60 2,7268 2.7263 2,19 2.20
S(13) 67 225,9 225.98 2,7287 2.7292 2,12 2.10
S(15) 87 219,5 219.32 2,7347 2.7345 1,91 1.91

TABL E IV Obtained results from neural network for testing patterns

Particle size Experimental Neural Experimental Neural Experimental Neural
(µm) tensile strengths network density network porosity network

Samples input (MPa) outputs (g/cm3) outputs (%) outputs

S(3) 8 268,3 258.71 2,7001 2.7018 3,14 3.04
S(5) 16 251,3 250.36 2,7034 2.7047 3,03 2.91
S(7) 27 245,1 244.55 2,7084 2.7114 2,85 2.71
S(11) 53 233,9 233.51 2,7259 2.7229 2,22 2.31
S(14) 75 221,8 222.60 2,7301 2.7321 2,07 2.01

in the output layer of the network [23].

ek(n) = dk(n) − yk(n) (1)

εav = 1

2N

N∑

n=1

.
∑

k∈C

e2
k (n) (2)

In Tables III and IV, the experimental and neural net-
work prediction results of tensile strength, density and
porosity, according to particle size have been given for
training and test sets. The training is more difficult due

to the structure of the data in density values because of
floating points in values.

The neural network prediction results showed a good
agreement with experimental results. It is clearly seen
in Tables III and IV that the neural network predicts
physical properties and tensile strengths in particle rein-
forced aluminum matrix composites according to given
SiC particle size (µm), succesfully. The basic consid-
eration of this paper is to predict the result of the ex-
periments, which has not been done, by using some of
realized experimental values instead of time consuming
experiments. Considerable savings in terms of cost and
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time were obtained from using neural network model,
neural network results revealed a good accord with ex-
perimental data, and neural network supplied further
beneficial data from comparatively small experimental
databases. Very good performance of the trained neural
network was achieved.
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